Mandrill to BigQuery

This page provides you with instructions on how to extract data from Mandrill and load it into Google BigQuery. (If this manual process sounds onerous, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

About Mandrill

Mandrill is a transactional email API for MailChimp users. MailChimp, as you no doubt know, is a marketing automation platform that businesses use to send out more than a billion email messages every day. The Mandrill service is an add-on for MailChimp users that businesses can use to send personalized, one-to-one ecommerce email messages or automated transactional email. The Mandrill API lets developers not only send email programmatically, but also access reporting data.

What is Google BigQuery?

Google BigQuery is a data warehouse that delivers super-fast results from SQL queries, which it accomplishes using a powerful engine dubbed Dremel. With BigQuery, there's no spinning up (and down) clusters of machines as you work with your data. With all of that said, it's clear why some claim that BigQuery prioritizes querying over administration. It's super fast, and that's the reason why most folks use it.

Getting data out of Mandrill

Mandrill has official API clients or wrappers for Ruby, Python, Node.js, PHP, and JavaScript. Suppose you want to use Python to extract the data from Mandrill and load it into a data warehouse such as Amazon Redshift. Your first step is to use pip to install the Mandrill API client with a command like sudo pip install mandrill.

Once you have a copy of the Mandrill library, you can start coding with it. Import the library module and instantiate the Mandrill class with this code:

import mandrill
mandrill_client = mandrill.Mandrill('YOUR_API_KEY')

You can then begin accessing data with calls like:

    mandrill_client = mandrill.Mandrill('YOUR_API_KEY')
    result ='example id')

The returned data will include a URL you can use to fetch the results, which are returned as a ZIP archive. You must then unzip the results to generate a CSV file. You may have to run multiple export commands to get all the data you want, in multiple files.

Loading data into Google BigQuery

Google Cloud Platform offers a helpful guide for loading data into BigQuery. You can use the bq command-line tool to upload the files to your awaiting datasets, adding the correct schema and data type information along the way. The bq load command is your friend here. You can find the syntax in the bq command-line tool quickstart guide. Iterate through this process as many times as it takes to load all of your tables into BigQuery.

Other data warehouse options

BigQuery is really great, but sometimes you need to optimize for different things when you're choosing a data warehouse. Some folks choose to go with Postgres or Redshift, which are two RDBMS that use similar SQL syntax. If you're interested in seeing the relevant steps for loading this data into Postgres or Redshift, check out To Redshift and To Postgres.

Easier and Faster Alternatives

If all this sounds a bit overwhelming, don’t be alarmed. If you have all the skills necessary to go through this process, chances are building and maintaining a script like this isn’t a very high-leverage use of your time.

Thankfully, products like Stitch were built to solve this problem automatically. With just a few clicks, Stitch starts extracting your Mandrill data via the API, structuring it in a way that is optimized for analysis, and inserting that data into your Google BigQuery data warehouse.